

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583 **QUESTION BANK (DESCRIPTIVE)**

Subject with Code: AWP (20EC0421) Course & Branch: B.Tech & ECE

Regulation: R20 Year &Sem: III-B.Tech & II-Sem

UNIT-I ANTENNA & RADIATION PARAMETERS

1.	Explain the radiation pattern of an antenna and its types with neat sketch.	[L2][CO1]	[12M]
2.	Explain the following: i). Radiation Intensity ii). Antenna Gain iii). Directivity	[L2][CO1]	[12M]
	a). Write short notes on effective aperture.	[L1][CO1]	[6M]
3.	b). Define the following terms. i). Radiation Resistance ii). Bandwidth iii). Beam Efficiency	[L1][CO1]	[6M]
4.	A dipole having a length of 3 cm is operated at 1 GHz. The efficiency factor K=0.6. Calculate the radiation resistance, antenna gain and effective aperture.	[L3][CO1]	[12M]
5.	Describe the following with suitable equations. i). Antenna Matching. ii). Antenna Noise Temperature	[L2][CO1]	[12M]
6.	Discuss the concepts of radiation from the oscillating dipole.	[L2][CO2]	[12M]
7.	Deduce the expression for radiation Parameters of a Half wave Dipole Antenna.	[L3][CO3]	[12M]
	(a). What is meant by Front to back ratio?	[L3][CO1]	[4M]
8.	(b). An antenna receives a maximum power of $2\mu W$ from a radio station. Calculate the maximum effective area if the antenna is located in the far field station where $E=50mV/m$.	[L3][CO1]	[8M]
9.	An antenna has a radiation resistance of 72Ω , and a loss resistance is 8Ω if the power gain of 16. Calculate the directivity of the antenna and the length of half wave dipole at 30MHz.	[L4][C01]	[12M]
10.	Derive the expression for radiation Parameters of a Quarter wave monopole antenna.	[L3][CO3]	[12M]

UNIT –II VHF, UHF AND MICROWAVE ANTENNAS – I

1.	a). Discuss the folded dipole antenna and its input impedance.	[L2][CO4]	[6M]
	b). What are parasitic elements & where they are used?	[L1][CO4]	[6M]
2.	Explain about construction and operation of Yagi-Uda antenna with neat sketch.	[L2][CO4]	[12M]
3.	a). List the advantages, disadvantages and applications of Yagi-Uda antenna.	[L1][CO4]	[6M]
	b). Design Yagi-Uda antenna of six elements to provide a gain of 12dB if the operating frequency is 200 MHz.	[L5][CO4]	[6M]
4.	a). Explain about the construction and operation of helical antenna.	[L2][CO2]	[8M]
4.	b). List the applications of Helical Antenna.	[L1][CO2]	[4M]
5.	a). Discuss about the helical antenna of normal mode and its radiation pattern.	[L2][CO2]	[6M]
٥.	b). Discuss about the helical antenna of axial mode and its radiation pattern.	[L2][CO2]	[6M]
6	a). Define the following terms of Helical Antenna.i). Pitch Angleii). Axial Ratio	[L1][CO2]	[6M]
6.	b). Calculate the directivity of 20 turn helix with $\alpha = 12^{0}$ and circumference equals to one wavelength.	[L3][CO2]	[6M]
7.	Discuss about the horn antenna types & its characteristics.	[L2][CO2]	[12M]
	a). Discuss the design considerations of pyramidal horn antenna.	[L2][CO2]	[6M]
8.	b). Calculate the directivity of pyramidal horn antenna with an aperture. If size 12x12cm operating with 3.2cm wavelength.	[L3][CO2]	[6M]
9.	a). Derive input impedance for three-wire Folded Dipole antenna.	[L3][CO2]	[6M]
	b). Discuss about calculations of Yagi- Uda Array elements.	[L2][CO4]	[6M]
10.	Write a short notes on the following: i). Helical Antenna ii). Horn antenna	[L1][CO2]	[12M]

UNIT –III $\ \, \text{VHF, UHF AND MICROWAVE ANTENNAS} - \text{II \& ANTENNA MEASUREMENTS} \\$

1	a). Explain about micro strip antennas and its types with neatdiagrams.	[L2][CO2]	[6M]
	b). Give the advantages and limitations of micro strip antennas.	[L1][CO2]	[6M]
2	a). Discuss the construction of rectangular patch antenna.	[L2][CO2]	[8M]
	b). What are the applications of microstrip antenna?	[L1][CO2]	[4M]
3	Discuss the characteristics of Microstrip Antenna.	[L1][CO2]	[12M]
4	a). Explain the types of reflector antennas.	[L2][CO2]	[6M]
4	b). Draw and explain the principle of parabolic reflector.	[L2][CO2]	[6M]
	a). Explain the different feed methods to parabolic reflectors.	[L2][CO2]	[8M]
5	b). A parabolic dish provides a power gain of 50 dB at 10 GHz with 70% efficiency. Find out i) HPBW ii) BWFN	[L3][CO2]	[4M]
6	a). Explain Cassegrain Feed system and give its advantages	[L2][CO2]	[6M]
U	b). Explain about the reciprocity with respect to antenna measurements.	[L5][CO5]	[6M]
7	a). Write short notes on coordination system for antenna measurement.	[L1][CO5]	[6M]
/	b). Explain near and far fields with respect to antenna measurements.	[L5][CO5]	[6M]
8	Explain the radiation pattern measurement with fundamental procedure, arrangements and distance requirement.	[L2][CO5]	[12M]
9	a). Explain sources of Error in Antenna measurement.	[L2][CO5]	[6M]
	b). Explain the measurement of directivity.	[L5][CO5]	[6M]
10	a). Explain Gain measurement by direct comparison method.	[L5][CO5]	[6M]
	b). Explain the gain measurement using absolute method.	[L5][CO5]	[6M]

UNIT –IV ANTENNA ARRAYS

1.	a). What is antenna array and explain its types?	[L2][CO4]	[8M]
	b). Define the point sources.	[L1][CO4]	[4M]
2.	a). Write brief note on pattern and its types.	[L1][CO4]	[8M]
	b). What are the different cases of arrays of two-point sources?	[L1][CO4]	[4M]
3.	Derive the expression for far field pattern of an array of two isotropic point sources at equal amplitude & same phase.	[L4][CO4]	[12M]
4.	Derive the expression for far field pattern of an array of two isotropic point sources at equal amplitude & opposite phase.	[L4][CO4]	[12M]
	a). Explain pattern multiplication with any one case.	[L3][CO4]	[8M]
5.	b). Find the minimum spacing between the elements in a broadsidearray of 10 isotropic radiators to have directivity of 7db.	[L2][CO4]	[4M]
	a). Explain n- element uniform linear array	[L5][CO4]	[6M]
6.	b). A broad side array operating at 10cm wavelength consists of 4 half wave dipole spaced 50 cm each element carries radio frequencycurrent in the same phase and magnitude 0.25A. Calculate the radiated power, half power beamwidth of major lobe.	[L5][CO4]	[6M]
7.	Explain End fire array with increase directivity and derive the directivity equation.	[L2][CO4]	[12M]
8.	a). What is Broad side array and its radiation pattern.	[L2][CO4]	[4M]
δ.	b). Deduce the characteristics of n-elements Broad side array.	[L3][CO4]	[8M]
9.	a). What is End fire array and its radiation pattern.	[L2][CO4]	[4M]
	b). Deduce the characteristics of n-elements End fire array.	[L3][CO4]	[8M]
10.	a). Compare the Broad side array and End fire array.	[L5][CO4]	[6M]
	b). Explain about the Binomial array.	[L2][CO4]	[6M]

UNIT -V WAVE PROPAGATION

1.	a). Explain different modes of Wave Propagation.	[L2][CO6]	[6M]
	b). Explain about refraction and reflection of EM waves.	[L2][CO6]	[6M]
2.	Explain the Structure of Ground wave propagation with neat sketch.	[L2][CO6]	[12M]
3.	Draw and explain the structure of Ionosphere with its typical electron density variation characteristics.	[L3][CO6]	[12M]
4.	Explain Reflection and Refraction of sky waves by ionosphere.	[L2][CO6]	[12M]
5.	a). Discuss about Ray path with neat sketch.	[L2][CO6]	[6M]
5.	b). Explain critical frequency and its expression.	[L2][CO6]	[6M]
	a). Explain Maximum usable frequency with its expression.	[L2][CO6]	[6M]
6.	b). Determine the maximum usable frequency for a critical frequency of 20 MHz and an angle of incidence of 350.	[L2][CO6]	[6M]
7.	a). Explain lowest usable high frequency (LUHF) and give its significance.	[L2][CO6]	[6M]
	b). Explain optimum working frequency and its significance.	[L2][CO6]	[6M]
8.	a). Explain Virtual height and its significance.	[L2][CO6]	[6M]
٥.	b), Explain Skip distance and derive its expression.	[L2][CO6]	[6M]
9.	a). Explain the relation between MUF and skip distance.	[L2][CO6]	[6M]
9.	b). Explain Multi hop propagation.	[L2][CO6]	[6M]
	a). Explain the energy loss in Ionosphere.	[L2][CO6]	[6M]
10.	b). For a flat earth assume that at 400 km reflection takes place. The maximum density of ionosphere corresponds to a refractive index of 0.9 at 10 MHz. Calculate range for which maximum usable frequencyis 10 MHz.	[L4][CO6]	[6M]

Prepared by: Dr. P. G. Gopinath, Prof. P.G. Kuppusamy, Mr. B. Ravibabu & J. Rajanikanth